HOMEWORK 4 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

1. Section 2.6: Limits at Infinity; Horizontal Asymptotes
2.6.4.
(a) 2
(b) -2
(c) ∞
(d) $-\infty$
(e) $-\infty$
(f) Horizontal asymptotes: $y=-2, y=2$; Vertical asymptotes: $x=-2$, $x=0, x=3$
2.6.22. $\frac{1}{3}$ (factor out x from the numerator and pull out the x^{2} from inside the square root)
2.6.32. $-\infty$ (factor out x^{3} from the numerator and x^{2} from the denominator)
2.6.34. $\tan ^{-1}(-\infty)=-\frac{\pi}{2}$ (by continuity of $\left.\tan ^{-1}\right)$
2.6.57. 5 (by the squeeze theorem)

2. Section 2.7: Derivatives and Rates of Change

2.7.6. $y=x+4((y-3)=(x+1)$ is also acceptable $)$
2.7.12.
(a) A runs with constant speed, while B is slow at first and then speeds up
(b) ≈ 8.5 seconds
(c) 9 seconds
2.7.17. $g^{\prime}(0)<0<g^{\prime}(4)<g^{\prime}(2)<g^{\prime}(-2)$
2.7.18.
(a) $y=4 x-23(y+3=4(x-5)$ is also acceptable)
(b) $f(4)=3, f^{\prime}(4)=\frac{1}{4}$
2.7.32. $f(x)=\sqrt[4]{x}, a=16$
2.7.34. $f(x)=\tan (x), a=\frac{\pi}{4}$
2.7.40. $\approx-\frac{5}{6} \mathrm{~F} / \mathrm{min}$ (slope of the red line)

[^0]
2.7.46.

(a) Rate of bacterias/hour after 5 houts
(b) $f^{\prime}(10)>f^{\prime}(5)$ (basically, the more bacteria there are, the more can be produced). But if there's a limited supply of food, we get that $f^{\prime}(10)<$ $f^{\prime}(5)$, i.e. bacterias are dying out because of the limited supply
3. Section 2.8: The derivative as a function

2.8.3.

(a) II
(b) IV
(c) I
(d) III
2.8.21. $f^{\prime}(t)=5-18 t$
2.8.38. -1 (not continuous there); 2 (graph has a kink)

2.8.43.

(a) Acceleration
(b) Velocity
(c) Position
2.8.52. Not differentiable at the integers, because not continuous there; $f^{\prime}(x)=0$ for x not an integer, undefined otherwise. Graph looks like the 0 -function, except it has holes at the integers.

[^0]: Date: Wednesday, February 16th, 2011.

