HOMEWORK 4 - ANSWERS TO (MOST) PROBLEMS

PEYAM RYAN TABRIZIAN

1. Section 2.6: Limits at Infinity; Horizontal Asymptotes

2.6.4.

- (a) 2
- (b) -2
- (c) ∞
- (d) $-\infty$
- $(e) -\infty$
- (f) Horizontal asymptotes: y = -2, y = 2; Vertical asymptotes: x = -2, x = 0, x = 3

2.6.22. $\frac{1}{3}$ (factor out x from the numerator and pull out the x^2 from inside the square root)

2.6.32. $-\infty$ (factor out x^3 from the numerator and x^2 from the denominator)

2.6.34. $\tan^{-1}(-\infty) = -\frac{\pi}{2}$ (by continuity of \tan^{-1})

2.6.57. 5 (by the squeeze theorem)

2. Section 2.7: Derivatives and Rates of Change

2.7.6. y = x + 4 ((y - 3) = (x + 1) is also acceptable)

2.7.12.

- (a) A runs with constant speed, while B is slow at first and then speeds up
- (b) ≈ 8.5 seconds
- (c) 9 seconds

2.7.17. g'(0) < 0 < g'(4) < g'(2) < g'(-2)

2.7.18.

- (a) y = 4x 23 (y + 3) = 4(x 5) is also acceptable) (b) f(4) = 3, $f'(4) = \frac{1}{4}$
- **2.7.32.** $f(x) = \sqrt[4]{x}, a = 16$

2.7.34.
$$f(x) = \tan(x), a = \frac{\pi}{4}$$

2.7.40. $\approx -\frac{5}{6}$ F/min (slope of the red line)

Date: Wednesday, February 16th, 2011.

PEYAM RYAN TABRIZIAN

2.7.46.

 $\mathbf{2}$

- (a) Rate of bacterias/hour after 5 houts
- (b) f'(10) > f'(5) (basically, the more bacteria there are, the more can be produced). But if there's a limited supply of food, we get that f'(10) < f'(5), i.e. bacterias are dying out because of the limited supply

3. Section 2.8: The derivative as a function

2.8.3.

- (a) II
- (b) IV
- (c) I
- (d) III

2.8.21. f'(t) = 5 - 18t

2.8.38. -1 (not continuous there); 2 (graph has a kink)

2.8.43.

- (a) Acceleration
- (b) Velocity
- (c) Position

2.8.52. Not differentiable at the integers, because not continuous there; f'(x) = 0 for x not an integer, undefined otherwise. Graph looks like the 0-function, except it has holes at the integers.